Mark scheme - Pressure

Question		Answer/Indicative content	Marks	Guidance
1		C	1 (AO1.1)	
		Total	1	
2		B \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 1.2) \end{gathered}$	
		Total	1	
3		C	1(AO2.1)	
		Total	1	
4		D	1	
		Total	1	
5		C	1	
		Total	1	
6	i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 100 (Pa) award 3 marks pressure $=$ force \div area \checkmark $=10 \div 0.1 \checkmark$ $=100(\mathrm{~Pa}) \sqrt{ }$	3 (AO1.2) (AO2.1) (AO2.1)	Examiner's Comments Many candidates were not able to recall the equation $P=F / A$. Some candidates did recall the equation and correctly calculated the pressure in the fluid as 100 Pa . A common misconception was using the equation $P=F \times A$ to calculate the pressure as 1 Pa .
	ii	at right angles/perpendicular/ 90° (to the plunger)	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	ALLOW to the left opposite to the force from the plunger Examiner's Comments Many answers here bore no relationship to the diagram: Any clear indication of direction including 'left' or 'at right angles' or 'perpendicular 90° to the plunger' were accepted. Ambiguous and inappropriate directions such as 'to the east' were not credited.
		Total	4	
7		Doubled $\sqrt{ }$ Doubled \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 1.1 \mathrm{x} \end{gathered}$ 2)	
		Any two from: As temperature increases, pressure increases / AW $\sqrt{ }$	$\begin{gathered} 2 \\ (\mathrm{AO} 1.1 \cdot x \end{gathered}$ 2)	ALLOW higher temperature means bigger

